Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Let 𝜋 and \pi^{\prime}be cuspidal automorphic representations of \mathrm{GL}(n)and \mathrm{GL}(n^{\prime})with unitary central characters.We establish a new zero-free region for all \mathrm{GL}(1)-twists of the Rankin–Selberg 𝐿-function L(s,\pi\times\pi^{\prime}), generalizing Siegel’s celebrated work on Dirichlet 𝐿-functions.As an application, we prove the first unconditional Siegel–Walfisz theorem for the Dirichlet coefficients of -L^{\prime}(s,\pi\times\pi^{\prime})/L(s,\pi\times\pi^{\prime}).Also, for n\leq 8, we extend the region of holomorphy and nonvanishing for the twisted symmetric power 𝐿-functions L(s,\pi,\mathrm{Sym}^{n}\otimes\chi)of any cuspidal automorphic representation of \mathrm{GL}(2).more » « lessFree, publicly-accessible full text available March 22, 2026
-
Abstract We establish two new variants of arithmetic quantum ergodicity. The first is for self-dual$$\textrm{GL}_2$$ Hecke–Maaß newforms over$$\mathbb {Q}$$ as the level and Laplace eigenvalue vary jointly. The second is a nonsplit analogue wherein almost all restrictions of Hilbert (respectively Bianchi) Hecke–Maaß cusp forms to the modular surface dissipate as their Laplace eigenvalues grow.more » « lessFree, publicly-accessible full text available March 1, 2026
An official website of the United States government
